Методические аспекты использования объектных моделей при изучении планиметрии

Педагогика » Методика обучения школьников планиметрии с использованием объектных моделей » Методические аспекты использования объектных моделей при изучении планиметрии

Страница 2

Можно выполнить серии упражнений на подсчет числа граней, вершин, ребер у куба, пирамиды и т. д. Интересно сопоставить число граней, вершин, ребер куба и прямоугольного, прямого наклонного параллелепипедов (термины не сообщаются). Поможет сделать правильный вывод модель куба, у которой вертикальные ребра сделаны из резинок. В руках учителя модель трансформируется из куба в прямоугольный, затем в наклонный параллелепипед.

Познакомившись с понятиями плоской и пространственной фигур, намечаем мелом на моделях геометрических тел различные плоские и пространственные фигуры (на кубе, на цилиндре, на шаре и др.). Полезно модели этих фигур изготовить из проволоки: окружность и спираль (кривые на цилиндре), квадрат и пространственная ломаная линия из ребер куба и т. п.

Введя понятие равных и неравных отрезков, исследуем, какие отрезки равны и какие не равны у куба, параллелепипеда, призмы, пирамиды. Вместе с кубом можно рассмотреть прямой параллелепипед, в основании у которого лежит ромб и высота равна стороне основания, и тетраэдр. Выясняется, что не только у куба все ребра равны.

При введении понятий «окружность», «круг» сопоставляем плоские кривые замкнутые линии и пространственные (на шаре и цилиндре). Здесь доступны для школьников вопросы типа: «В чем сходство и различие между плоскими и пространственными замкнутыми кривыми на шаре?». Доступен пониманию учащихся показ кругов и окружностей на сечениях шара, цилиндра и конуса. Сечение можно показать наглядно, разрезав яблоко ножом; сечения различной формы получим, налив в стакан цилиндрической формы воду и постепенно наклоняя его. Показав сечение цилиндра в форме эллипса, учитель обращает внимание учащихся, что эту фигуру мы чертим, изображая на плоскости чертежа основание цилиндра или конуса. Дело в том, что если круг наблюдать под разными углами зрения (показывает), то он меняет свою форму от «круглой» до «приплюснутой». Это можно использовать на уроке изучения фигуры эллипса.

При изучении темы ломанные и многоугольники необходимо обратить внимание учащихся, что, пересекая плоскостью конус и цилиндр, можем получить в сечении не только кривые линии, но и ломаные. Демонстрируем соответствующие каркасные или стеклянные модели с выделенными на них сечениями. Понятие «многоугольник» хорошо иллюстрируется на многогранниках. Например, рассматривая пирамиды различных видов, ученики делают вывод, что основание этих тел может являться треугольником, четырехугольником, пятиугольником и т. д. (отсюда соответственно и названия: треугольная, четырехугольная, пятиугольная пирамиды). Зато боковые грани пирамид всегда имеют форму треугольников.

Познакомившись с понятием угла (образованного лучами и образованного отрезками), рассматриваем различные углы на моделях геометрических тел, подсчитываем, сколько углов сходится в вершинах этих тел, находим на моделях тупые, прямые и острые углы.

Виды треугольников также хорошо иллюстрируются на пирамидах и треугольных призмах. Приложение понятий «равнобедренный треугольник», «равные стороны», «равные углы» к изучению особенностей правильных в неправильных пирамид позволяет моделировать своеобразный естественнонаучный метод исследования. Напомним, что ученикам неизвестны определения правильных и неправильных пирамид. Эти названия учитель сообщил им методом показа: «Вот эта группа тел - правильные пирамиды, а вот эта неправильные»

Уже в процессе измерения размеров пирамиды и определения формы их граней ученики находят общие признаки пирамид: в основании лежит многоугольник, боковые грани - треугольники, сходящиеся в одной общей вершине. Затем находятся признаки, которые отличают правильную пирамиду от неправильной.

Имея достаточный набор пирамид (по одной паре на парту), можно организовать наблюдения (и запись в тетрадях) по следующей форме (см. таблицу 1):

Таблица 1

Форма для записи наблюдений

Пирамида

Форма боковых граней

Форма основания

Размер сторон основания

Углы основания

1

2

3

4

5

6

1

Правильная

Остроугольные равнобедренные треугольники

Пятиугольник

Все стороны по 10 см.

Равные тупые углы

2

Правильная

Тупоугольные равнобедренные треугольники

Четырехугольник (квадрат)

Все стороны равны по 12 см.

Равные прямые углы

Неправильная

Разносторонние треугольники (есть остроугольный, 2 прямоугольных и 2 тупоугольных

Пятиугольник

Все стороны равны по 10 см.

Углы разные

Страницы: 1 2 3 4

Другие статьи:

Ключевые компетенции западного и отечественного образования
Вопрос о ключевых компетенциях стал предметом обсуждения во всем мире. Особенно актуально эта проблема звучит сейчас в связи с модернизацией Российского образования. В «Концепции модернизации российского образования на период до 2010 года» зафиксировано полож ...

Выявление уровня сформированности элементов экологической культуры у детей младшего школьного возраста
Для проведения констатирующего этапа были использованы следующие методики: анкетирование и наблюдение. На констатирующем этапе исследования с целью выявления уровня сформированности элементов экологической культуры у младших школьников подобраны следующие мет ...

Разделы